Extensions 1→N→G→Q→1 with N=C22xC4 and Q=F5

Direct product G=NxQ with N=C22xC4 and Q=F5
dρLabelID
C22xC4xF580C2^2xC4xF5320,1590

Semidirect products G=N:Q with N=C22xC4 and Q=F5
extensionφ:Q→Aut NdρLabelID
(C22xC4):1F5 = (C22xC4):F5φ: F5/C5C4 ⊆ Aut C22xC4804(C2^2xC4):1F5320,254
(C22xC4):2F5 = C22:F5:C4φ: F5/C5C4 ⊆ Aut C22xC480(C2^2xC4):2F5320,255
(C22xC4):3F5 = C2xD10.D4φ: F5/C5C4 ⊆ Aut C22xC480(C2^2xC4):3F5320,1082
(C22xC4):4F5 = C23:F5:5C2φ: F5/C5C4 ⊆ Aut C22xC4804(C2^2xC4):4F5320,1083
(C22xC4):5F5 = C2xD10.3Q8φ: F5/D5C2 ⊆ Aut C22xC480(C2^2xC4):5F5320,1100
(C22xC4):6F5 = C4xC22:F5φ: F5/D5C2 ⊆ Aut C22xC480(C2^2xC4):6F5320,1101
(C22xC4):7F5 = (C22xC4):7F5φ: F5/D5C2 ⊆ Aut C22xC480(C2^2xC4):7F5320,1102
(C22xC4):8F5 = D10:6(C4:C4)φ: F5/D5C2 ⊆ Aut C22xC480(C2^2xC4):8F5320,1103
(C22xC4):9F5 = C22xC4:F5φ: F5/D5C2 ⊆ Aut C22xC480(C2^2xC4):9F5320,1591
(C22xC4):10F5 = C2xD10.C23φ: F5/D5C2 ⊆ Aut C22xC480(C2^2xC4):10F5320,1592

Non-split extensions G=N.Q with N=C22xC4 and Q=F5
extensionφ:Q→Aut NdρLabelID
(C22xC4).1F5 = (C22xC4).F5φ: F5/C5C4 ⊆ Aut C22xC4160(C2^2xC4).1F5320,252
(C22xC4).2F5 = C5:(C23:C8)φ: F5/C5C4 ⊆ Aut C22xC480(C2^2xC4).2F5320,253
(C22xC4).3F5 = C22.F5:C4φ: F5/C5C4 ⊆ Aut C22xC4160(C2^2xC4).3F5320,257
(C22xC4).4F5 = C20.29M4(2)φ: F5/C5C4 ⊆ Aut C22xC4804(C2^2xC4).4F5320,250
(C22xC4).5F5 = (C2xC20):1C8φ: F5/C5C4 ⊆ Aut C22xC4160(C2^2xC4).5F5320,251
(C22xC4).6F5 = C2xDic5.D4φ: F5/C5C4 ⊆ Aut C22xC4160(C2^2xC4).6F5320,1098
(C22xC4).7F5 = (C4xD5).D4φ: F5/C5C4 ⊆ Aut C22xC4804(C2^2xC4).7F5320,1099
(C22xC4).8F5 = C10.6M5(2)φ: F5/D5C2 ⊆ Aut C22xC4160(C2^2xC4).8F5320,249
(C22xC4).9F5 = C10.(C4:C8)φ: F5/D5C2 ⊆ Aut C22xC4320(C2^2xC4).9F5320,256
(C22xC4).10F5 = C2xC10.C42φ: F5/D5C2 ⊆ Aut C22xC4320(C2^2xC4).10F5320,1087
(C22xC4).11F5 = C4xC22.F5φ: F5/D5C2 ⊆ Aut C22xC4160(C2^2xC4).11F5320,1088
(C22xC4).12F5 = C2xD10:C8φ: F5/D5C2 ⊆ Aut C22xC4160(C2^2xC4).12F5320,1089
(C22xC4).13F5 = C2xDic5:C8φ: F5/D5C2 ⊆ Aut C22xC4320(C2^2xC4).13F5320,1090
(C22xC4).14F5 = D10.11M4(2)φ: F5/D5C2 ⊆ Aut C22xC480(C2^2xC4).14F5320,1091
(C22xC4).15F5 = C20.34M4(2)φ: F5/D5C2 ⊆ Aut C22xC4160(C2^2xC4).15F5320,1092
(C22xC4).16F5 = D10:9M4(2)φ: F5/D5C2 ⊆ Aut C22xC480(C2^2xC4).16F5320,1093
(C22xC4).17F5 = Dic5.13M4(2)φ: F5/D5C2 ⊆ Aut C22xC4160(C2^2xC4).17F5320,1095
(C22xC4).18F5 = C2xC20.C8φ: F5/D5C2 ⊆ Aut C22xC4160(C2^2xC4).18F5320,1081
(C22xC4).19F5 = C2xC20:C8φ: F5/D5C2 ⊆ Aut C22xC4320(C2^2xC4).19F5320,1085
(C22xC4).20F5 = Dic5.12M4(2)φ: F5/D5C2 ⊆ Aut C22xC4160(C2^2xC4).20F5320,1086
(C22xC4).21F5 = D10:10M4(2)φ: F5/D5C2 ⊆ Aut C22xC480(C2^2xC4).21F5320,1094
(C22xC4).22F5 = C20:8M4(2)φ: F5/D5C2 ⊆ Aut C22xC4160(C2^2xC4).22F5320,1096
(C22xC4).23F5 = C20.30M4(2)φ: F5/D5C2 ⊆ Aut C22xC4160(C2^2xC4).23F5320,1097
(C22xC4).24F5 = C22xC4.F5φ: F5/D5C2 ⊆ Aut C22xC4160(C2^2xC4).24F5320,1588
(C22xC4).25F5 = C2xD5:M4(2)φ: F5/D5C2 ⊆ Aut C22xC480(C2^2xC4).25F5320,1589
(C22xC4).26F5 = C22xC5:C16central extension (φ=1)320(C2^2xC4).26F5320,1080
(C22xC4).27F5 = C2xC4xC5:C8central extension (φ=1)320(C2^2xC4).27F5320,1084
(C22xC4).28F5 = C22xD5:C8central extension (φ=1)160(C2^2xC4).28F5320,1587

׿
x
:
Z
F
o
wr
Q
<